Abstract
This article describes a new method for the facile synthesis of Pd-Pt alloy nanocages with hollow interiors and porous walls by using Pd nanocubes as sacrificial templates. Differing from our previous work (Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. Synthesis of Pd-Pt Bimetallic Nanocrystals with a Concave Structure through a Bromide-Induced Galvanic Replacement Reaction. J. Am. Chem. Soc.2011, 133, 6078-6079), we complemented the galvanic replacement (between Pd nanocubes and PtCl(4)(2-)) with a coreduction process (for PdCl(4)(2-) from the galvanic reaction and PtCl(4)(2-) from the feeding) to generate Pd-Pt alloy nanocages in one step. We found that the rate of galvanic replacement (as determined by the concentrations of Br(-) and PtCl(4)(2-) and temperature) and the rates of coreduction (as determined by the type of reductant and temperature) played important roles in controlling the morphology of resultant Pd-Pt alloy nanocages. The Pd-Pt nanocages exhibited both enhanced activity and selectivity for the preferential oxidation (PROX) of CO in excess hydrogen than those of Pd nanocubes and the commercial Pt/C thanks to the alloy composition and hollow structure. In addition, as the sizes of the Pd-Pt nanocages decreased, they exhibited higher CO conversion rates and lower maximum conversion temperatures due to the increase in specific surface area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.