Abstract

A facile synthesis of oligodeoxyribonucleotides via the phosphoramidite approach without base protection of the building blocks has been developed; it relies on the use of imidazolium triflate as a promoter for the condensation of a nucleoside phosphoramidite and a nucleoside. In the solution phase, the condensation is accomplished in a highly O-selective manner by using equimolar amounts of an N-free nucleoside phosphoramidite and an N-unblocked nucleoside to give, after oxidation with bis(trimethylsilyl)peroxide or with tert-butyl hydroperoxide, a dinucleoside phosphate in >95% yield. In the solid-phase synthesis, which requires an excess amount of the phosphoramidite for the condensation, deoxyadenosine and deoxycytidine undergo N-phosphitylation to some extent. The undesired product, however, can be converted to the N-free derivative by brief treatment with benzimidazolium triflate in methanol. Thus the overall process allows the chemoselective formation of internucleotide linkage. The oligomers prepa...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.