Abstract

The development of phase change material (PCM) composites with high latent heat of fusion and good shape-stability have received considerable attention for thermal energy engineering and management. In this work nitrogen-rich porous organic polymers (N-POPs) with high surface areas synthesized via Schiff-base coupling between 1,3,5-triformylbenzene and pararosaniline base are presented, which can take up 85 wt % of 1-octadecanol (ODA) as a PCM. The resulting ODA@N-POPs exhibit a high latent heat of fusion up to 182.7 J/g, satisfying shape-stability, and good reversibility upon 100 heating cycles, which are promising for solar thermal energy engineering and management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.