Abstract

Heteroatom doping is an effective method to improve the capacitive performance of graphene-based materials. In this work, a facile and efficient radio-frequency (RF) plasma treatment strategy has been employed to achieve simultaneous doping and reduction of graphene oxide (GO). As a result, boron-doped and nitrogen-doped reduced graphene oxide (denoted as B-rGO and N-rGO) have been synthesized rapidly under relatively low temperatures compared with conventional thermal methods. The B-rGO and N-rGO present significantly improved specific capacitances as high as 345 F g−1 and 365 F g−1 at 0.2 A g−1, respectively, exhibiting a fourfold increase compared to that of GO before plasma treatment. Interestingly, the N-rGO shows better rate capability than the B-rGO. Furthermore, the mechanism of simultaneous doping and reduction by RF plasma treatment is discussed based on the diagnosis of emission spectroscopy. The high energy electrons and plasma-excited ions and radicals render effective reduction, etching, and doping of GO at the same time. Compared with high-temperature carbonization and wet chemical methods, our plasma treatment method is more energy-saving and eco-friendly. We believe this rapid and straightforward plasma treatment method reported here can be extended to the incorporation of various heteroatoms into graphene lattice for broad applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call