Abstract
AbstractNonmetal‐dual doped graphene has attracted considerable attention as high‐performance anode material for lithium‐ion batteries (LIBs) due to the synergistic effects of heteroatom dopants. Herein, nitrogen and halogen (including Cl, Br, and I) dual‐doped graphene is successfully synthesized by a general wet chemical method and lithium storage performance of N, Cl codoped graphene as anode material for LIBs is investigated in detail. The dual‐doped heteroatoms introduce abundant defects and expand the interlayer spacing of graphene to benefit lithium insertion and extraction. When used as a typical anode material, the N and Cl dual‐doped porous graphene reveals a high specific capacity of 1200 mA h g−1 at 0.1 A g−1 and 1010 mA h g−1 at 1.0 A g−1. The as‐prepared sample exhibits superior cycling performance, whose specific capacity remains 95% at 5.0 A g−1 after 1800 cycles. The excellent performance mainly stems from the synergistic effect of structure modification and heteroatom doping, and the capacitive effects are dictated by kinetical analysis. The synthesized nitrogen and halogen dual‐doped porous graphene is a promising anode material for LIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.