Abstract

Fuel cell performance largely relies on the activity of catalyst; hence development of high performance electrocatalysts for the electrooxidation of methanol is highly essential for the further development in fuel cell technology. Herein, we demonstrate a facile hydrothermal approach for the growth of NiCo2O4 nanorods and their application in the methanol electrooxidation. The morphology and surface area investigation reveal the growth of NiCo2O4 nanorods with an average length of 500 nm and a specific surface area of 123 m2/g, respectively. The NiCo2O4 nanorods displayed a larger electrochemical activity towards the electrooxidation of methanol in alkaline pH than the quasi-spherical NiCo2O4 nanoparticles. On the NiCo2O4 nanorod based electrode a higher catalytic current density of 129 mA/cm2 and a high stability with 86% current retention was achieved, signifying that the current non-Pt based catalyst could be a non-expensive alternative candidate for high performance fuel cell application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.