Abstract

Urea electrolysis is a promising technology for hydrogen production, which can alleviate environmental pollution of urea-rich wastewater. It's worth noting that electrochemistry activity can be significantly improved by reasonably regulating the electron configuration around the active site for the doped materials. In this work, a series of well-tuned Ni doped CoWO4 nanoarrays on Ni foam supports have been prepared through a typical hydrothermal approach for the first time. Moreover, the resulting Ni–CoWO4-2 material significantly promotes urea oxidation performance with an applied potential of 1.35 V at 50 mA cm−2, which is lower than that of water oxidation reaction (1.60 V). Density functional theory results suggest that the Ni doped CoWO4 has larger urea adsorption energy compared with CoWO4 and the CO(NH2)2 molecule is strongly adsorbed on surface of Ni doped CoWO4, which is beneficial to accelerate the kinetics of the reaction and improve the electrocatalytic activity of the urea electrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call