Abstract

A new two-step synthesis of composite electrode based on carbon nanotubes (CNTs) and cobalt oxide (Co3O4) by electrophoretic deposition of CNTs on Ni foam followed by electrodeposition of cobalt hydroxide on CNTs electrode and heat treatment to form Co3O4/CNTs composite electrode was developed. The structure and morphology of the electrodes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their electrochemical performances were evaluated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Experimental results indicated that the nanocomposite electrodes exhibitd excellent pseudocapacitive behavior. In the potential range of 0.1- 0.45 V(vs SCE), the nanocomposite electrode showed a high specific capacitance of 867 F•g-1 in 6 M KOH electrolyte and a capacity retention of 90% after 1000 cycles at a current density of 1 A•g-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.