Abstract

In recent years, development of high-performance supercapacitor electrode materials has stimulated a great deal of scientific research. The electrochemical performance of a supercapacitor strongly depends on its material structures. Herein, we report a simple strategy for high-performance supercapacitors by building pseudocapacitive CuS nanospheres with nanoporous structures, nanosized walls (<10nm) and relatively large specific surface area of 65m2/g. This electrode demonstrates excellent electrochemical performance including a maximum specific capacitance of 814F/g at 1A/g, significant rate capability of 42% capacitance retention at an ultrafast rate of 50A/g, and outstanding long-term cycling stability at various current densities. The remarkable electrochemical performance of as-prepared nanoporous CuS nanospheres electrode has been attributed to its unique structures that plays a key role in providing short ion and electron diffusion pathways, facilitated ion transport and more active sites for electrochemical reactions. This work sheds a new light on the metal sulfides design philosophy, and demonstrates that nanoporous CuS nanospheres electrode is a promising candidate for application in high-performance supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call