Abstract

Delayed wound healing caused by excessive reactive oxygen species (ROS) remains a considerable challenge. In recent years, metal oxide nanozymes have gained significant attention in biomedical research. However, a comprehensive investigation of Co3O4-based nanozymes for enhancing wound healing and tissue regeneration is lacking. This study focuses on developing a facile synthesis method to produce high-stability and cost-effective Co3O4 nanoflakes (NFs) with promising catalase (CAT)-like activity to regulate the oxidative microenvironment and accelerate wound healing. The closely arranged Co3O4 nanoparticles (NPs) within the NFs structure result in a significantly larger surface area, thereby amplifying the enzymatic activity compared to commercially available Co3O4 NPs. Under physiological conditions, it was observed that Co3O4 NFs efficiently break down hydrogen peroxide (H2O2) without generating harmful radicals (·OH). Moreover, they exhibit excellent compatibility with various cells involved in wound healing, promoting fibroblast growth and protecting cells from oxidative stress. In a rat model, Co3O4 NFs facilitate both the hemostatic and proliferative phases of wound healing, consequently accelerating the process. Overall, the promising results of Co3O4 NFs highlight their potential in promoting wound healing and tissue regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.