Abstract

Development of high-performance, economic, and stable non-noble metal catalysts is a still formidable challenge in hydrogen evolution reaction (HER) that must be overcome to alleviate the energy and environmental crisis. Herein, we designed and fabricated N-doped carbon nanoframes encapsulated by CoP nanoparticles (CoP-NCN). The 3D porous structure of the ZIF-67-derived N-doped carbon shortened the charge and mass transport pathways, contributing to enhanced electrocatalytic performance. Moreover, the synergistic effects of excellent conductivity, abundant mesopores, and high-activity CoP nanoparticles led to remarkable electrocatalytic activity toward HER with an extremely low overpotential of 120 mV at 10 mA cm−2 and long-term stability. We further indicate that the fantastic HER catalytic ability of CoP-NCN is attributed to the good conductivity and the abundant active sites. The present study provides a promising avenue toward the design of cost-effective HER electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call