Abstract

Interest in carbon nanotubes for detecting the presence of pathogens arises because of developments in chemical vapor deposition synthesis and progresses in biomolecular modification. Here we reported the facile synthesis of multi-walled carbon nanotubes (MWCNTs), which functioned as immuno-, magnetic, fluorescent sensors in detecting Vibrio alginolyticus (Va). The structures and properties of functionalized MWCNTs were characterized by ultraviolet (UV), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), magnetic property measurement system (MPMS) and fluorescent spectra (FL). It was found that the functionalized MWCNTs showed: (1) low nonspecific adsorption for antibody–antigen, (2) strong interaction with antibody, and (3) high immune-magnetic activity for pathogenic cells. Further investigations revealed a strong positive linear relationship (R=0.9912) between the fluorescence intensity and the concentration of Va in the range of 9.0×102 to 1.5×106cfumL−1. Moreover, the relative standard deviation for 11 replicate detections of 1.0×104cfumL−1 Va was 2.4%, and no cross-reaction with the other four strains was found, indicating a good specificity for Va detection. These results demonstrated the remarkable advantages of the multifunctional MWCNTs, which offer great potential for the rapid, sensitive and quantitative detection of Va in fishery and environmental samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call