Abstract

Nanocomposites containing two or more functional constituents are attractive candidates for advanced nanomaterials. In this study, multifunctional Ag/Fe3O4-CS nanocomposites were successfully prepared, using chitosan as a stabilizing and cross-linking agent. The as-synthesized nanocomposites were characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), UV–visible spectrophotometer (UV–Vis) and vibrating sample magnetometer (VSM). The results demonstrated that Ag/Fe3O4-CS composite nanoparticles (NPs) were composed of parent components, Fe3O4 and Ag NPs, which were uniformly dispersed in the chitosan matrix. The hybrid NPs exhibited strong antibacterial property against Pseudomonas aeruginosa. With high magnetization value (67 emu/g), the synthesized Ag/Fe3O4-CS composite can be easily separated or recycled in potential biomedical applications. Furthermore, the results showed that the multicomponent hybrid nanostructures appeared to be the promising material for local hyperthermia, which can be used as thermoseeds for localized hyperthermia treatment of cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call