Abstract

Precisely incorporating a wide range of structural and functional multiblocks along a polymer backbone is a significant challenge in polymer chemistry and offers promising opportunities to design highly ordered materials, including controlled polymer folding. Herein, a facile and versatile strategy for preparing functional multiblock copolymers composed of sequential peptides and well-defined vinyl polymers with a narrow polydispersity is reported. Cyclic oligopeptides have been developed that contain an alkoxyamine bond in the framework. By using this type of cyclic initiator, peptide-containing multiblock copolymers are successfully synthesized by nitroxide-mediated polymerization of styrene. To demonstrate the versatility of this method, radical (co)polymerizations were carried out for different monomers (p-chlorostyrene, 4-vinylpyridine, and styrene/acrylonitrile) and by three different cyclic peptide initiators with specific amino acid sequences. The resultant multiblock copolymer is foldable through intramolecular interactions between peptide blocks. It is believed that this approach will significantly advance the field of controlled polymer synthesis for complex structures and single-chain folding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.