Abstract
In this work, intelligent pH-sensitive sensors (Fe3O4/RhB@PAM) for Cr(vi) detection were successfully synthesized based on polyacrylamide (PAM) and Rhodamine B (RhB) co-modified Fe3O4 nanocomposites. The characterization results indicated that the sensors had many favorable properties, including suitable size, stable crystal structure and excellent magnetic response performance (47.59 emu g-1). In addition, the fluorescence changes during the detection process indicated that Fe3O4/RhB@PAM were "ON-OFF" intelligent sensors. When the Fe3O4/RhB@PAM sensors were placed in acidic Cr(vi) solution (pH 4), PAM acted as a pH-responsive "gatekeeper" releasing RhB, and the fluorescence intensity of released RhB was weakened by the complexation of Cr(vi). Furthermore, the fluorescence changes of the magnetic sensors were remarkably specific for Cr(vi) even in the presence of other competitive cations, and the limit of detection (LOD) for Cr(vi) was lower (0.347 μM) than the value recommended by the World Health Organization (0.96 μM). All the results presented in this study showed that the Fe3O4/RhB@PAM sensors had significant potential for Cr(vi) detection in acidic environmental samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.