Abstract

Spinel lithium manganate octahedral nanoparticles have been prepared by high temperature solid-state combustion reaction using cellulose as fuel. The crystal structure, morphology, and electrochemical performance of the as-prepared materials are analyzed by X-ray diffraction (XRD), electron microscopy, and electrochemical testing. The XRD results show that the materials are single-phase and perfectly crystalline with a spinel structure. Microscopic observations reveal that the nanoparticles possess octahedral morphology, with an average particle size of about 165.4 nm and a uniform particle size distribution. The lithium manganate octahedral nanoparticles exhibit excellent initial discharge capacity of 118.5 and 78.3 mAh g−1, and about 72.49% and 94.6% of its initial discharge capacity can be retained even after 1600 cycles at 10 C and 3000 cycles at 20 C, respectively. The excellent electrochemical performance of the lithium manganate can be mainly attributed to the strong MnO6 framework mitigates the occurrence of Mn dissolution, maintains structural stability, and allows higher Li+ diffusion during electrochemical cycling. Furthermore, the nano-sized octahedral structure not only facilitates fast ion diffusion, but also mitigates the manganese dissolution due to the exposed (111) crystal planes, where the solid electrolyte interphase (SEI) forms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call