Abstract
Iron-ruthenium bimetallic oxide nanoparticles were precipitated on carbon nanotubes by liquid-phase plasma method. We also evaluated the physicochemical and electrochemical properties of prepared composite for supercapacitor electrode. Polycrystalline about 10 to 25 nm-sized bimetallic nanoparticles were evenly precipitated on the carbon nanotube (CNT) and consisted of Fe3+ and Ru4+. Bimetallic oxide nanoparticles’ composition depended on the ratio of the metal precursor concentration and standard reduction potential. The C-V area and specific capacitance of iron-ruthenium oxide nanoparticle/carbon nanotube (IRCNT) composite electrodes was higher than that of untreated CNT electrode, and increased with increasing ruthenium content. The cycling stability of IRCNT composite electrode was higher than untreated CNT electrode, especially iron element was more stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.