Abstract

The ethylene-modified silica membranes were prepared by the acid-catalyzed co-hydrolysis and condensation reaction of tetraethylorthosilicate (TEOS) and ethylenetriethoxysilane (TEVS) in ethanol and the final materials were characterized by scanning electron microscope (SEM), water contact angle measurement, solid-state 29Si magic angle spinning nuclear magnetic resonance ( 29Si MAS NMR), and N 2 adsorption. The modification leads to a transform from superhydrophilicity for the unmodified silica membranes to hydrophobicity for the modified materials. The ethylene-modified silica membranes are much less water sensitive than the unmodified materials because the hydrophobic ethylene groups replace a portion of the hydrophilic hydroxyl groups on the pore surface. The modified materials process a microporous structure with a narrow pore size distribution centered at 1.1 nm. Such a microporous structure can be stabilized after exposured to humid atmosphere for 450 h, in intense contrast to the collapse of the micropores in the unmodified silica membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call