Abstract
Square block-like σ-Mg0.25V2O5·H2O with an open layered framework has been successfully synthesized via a facile hydrothermal method. The entire synthetic process is efficient and economically beneficial. As a cathode material for lithium-ion batteries, the hydrated magnesium vanadium bronze exhibits a high reversible capacity and excellent cycling stability at high current rates. High discharge capacities of 294.2 and 221 mA h g−1 can be obtained at the current densities of 20 and 100 mA g−1, respectively. Meanwhile, the electrode achieves a capacity retention of 87.12% after 100 cycles at 100 mA g−1 and has an excellent long-term cyclic stability with an average decay of 0.053% per cycle over 400 cycles at 800 mA g−1. The structural stability and impedance variation of the σ-Mg0.25V2O5·H2O electrodes upon cycling have also been investigated. The excellent electrochemical performance suggests that the layered Mg0.25V2O5·H2O could be a promising candidate for the cathode material of lithium-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.