Abstract

BackgroundMultilayer hollow materials have attracted considerable attention as potentially valuable in drug delivery, catalysis, and nanoreactors. The main purpose of this work is to synthesize hybridized triple-shelled hollow mesoporous organosilica nanoparticles (htHMONs) with ethane-, benzene-, and thioether groups. MethodsThe nanoparticles are prepared using a surfactant-directed co-assembly process and a following hydrothermal etching strategy. First, hybridized mesostructured organosilica nanoparticles were synthesized via step-by-step adding multiple organosilica in a surfactant solution. The mesostructured organosilica nanoparticles are then transformed into htHMONs by hydrothermal treatment at 160 °C for 3 h. FindingThe prepared typical htHMONs possess a uniform diameter (320 nm), independent core (107 nm), and three separate shells (10, 13, and 23 nm from outside to inside). In addition, htHMONs possess typical properties of mesoporous materials, including uniform mesopore (4.20 nm), large specific surface area (SSA) (458 m2g−1), and huge pore volume (0.82 cm3g−1). Furthermore, htHMONs with various sizes (190–330 nm) are also prepared by varying the amount of structure-directing agent or volume ratio of water to ethanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.