Abstract

In the context of the proposed work, two different amino acids (Glycine, Phenylalanine) have interacted with copper ions in a phosphate buffer (PBS) in place of enzymes. This interaction resulted in the nucleation of copper phosphate crystals and the formation of flower-shaped amino acid-copper hybrid nanostructures (AA-hNFs), which grew through self-assembly. While Cu (II) ions in the structure of AA-hNFs were used as Fenton's agent for the catalytic activity. SEM, energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy measurements were used to define the AA-hNFs' characterisation. The peroxidase-like activities of AA-hNFs were investigated by UV-Vis spectrophotometer. The morphology and composition of AA-hNFs were carefully characterized and the synthesized parameters were optimized systematically. Results showed that the nanoparticles were dispersed with an average diameter of 7-9 μm and indicated a uniform flower shape. The results of the investigation are anticipated to significantly advance a number of technical and scientific sectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call