Abstract

Micro-nanostructured electrode materials are characterized by excellent performance in various secondary batteries. In this study, a facile and green hydrothermal method was developed to prepare amorphous vanadium-based microspheres on a large scale. Hollow V2O5 microspheres were achieved, with controllable size, after the calcination of amorphous vanadium-based microspheres and were used as cathode materials for lithium-ion batteries. As the quantity of V2O5 microspheres increased, the electrode performance improved, which was ascribed to the smaller charge transfer impedance. The discharge capacity of hollow V2O5 microspheres could be up to 196.4 mAhg−1 at a current density of 50 mAg−1 between 2.0 and 3.5 V voltage limits. This sheds light on the synthesis and application of spherical electrode materials for energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.