Abstract

In present study, hollow urchin-like nanostructures of Nb2O5 with elongated nanofilaments as photoanode material for dye-sensitized solar cells (DSSCs) are successfully synthesized at different reaction times (viz. 12, 24, and 40 h, respectively, named as samples NB-1, NB-2, and NB-3) using facile hydrothermal route. We have studied the significant influence of hydrothermal reaction time on the structural, optical, morphological, and electrical properties. The photovoltaic performance of different samples is understood from response of current-potential (J-V) curve and incident photon-to-current efficiency (IPCE) while charge recombination behavior and resistance of the cells are studied by electrochemical impedance spectroscopy (EIS). The X-ray diffraction (XRD) study shows the orthorhombic crystalline form for the synthesized samples. Electron microscopy studies confirm the formation of porous spherical morphology with hairy filaments protruding outward. Size of urchin-like particle is found to be in the range of about 1 μm diameter, and the filaments emerging out from the surface of hollow spheres are seen to be 30–70 nm long and 5–20 nm in diameter. The DSSCs fabricated from the resultant nanostructures show the better photovoltaic performance with Nb2O5 sample synthesized at 24-h reaction time. The Jsc and efficiency for NB-2 are 8.24 mAcm−2 and 3.58% respectively, which are better than corresponding samples synthesized at the reaction time of 12 h and 40 h, respectively. These photovoltaic results obtained from the DSSCs fabricated using Nb2O5 nanostructures are comparatively exciting with TiO2 spheres. By further optimizing reaction conditions, it is expected that niobium pentoxide can emerge as better semiconductor oxide for photovoltaic and optical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.