Abstract

Titanium niobium oxides emerge as promising anode materials with potential for applications in lithium ion batteries with high safety and high energy density. However, the innate low electronic conductivity of such a composite oxide seriously limits its practical capacity, which becomes a serious concern especially when a high rate charge/discharge capability is expected. Here, using a modified template-assisted synthesis protocol, which features an in-situ entrapment of both titanium and niobium species during the formation of polymeric microsphere followed by a pyrolysis process, we succeed in preparing hollow microspheres of titanium niobium oxide with high efficiency in structural control. When used as an anode material, the structurally-controlled hollow sample delivers high reversible capacity (103.7 mA h g−1 at 50 C) and extraordinary cycling capability especially at high charge/discharge currents (164.7 mA h g−1 after 500 cycles at 10 C).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.