Abstract

Graphene is a promising candidate for making next-generation nanotechnology devices due to its outstanding properties in terms of physical, chemical, mechanical aspects. Based on the theoretical point of view, graphene is a two-dimensional (2D) crystal structure with sp2 hybridized carbon atoms arrangement and has attracted extensive attention in a considerable number of applications such as solar energy, sensor and energy storage, naming a few. Herein, graphene oxide (GO) is synthesized from graphite flakes using the Improved Hummer's method. The results demonstrated the comparison of synthesized GO samples based on stirred duration of 6 h and 72 h. The FTIR results proved that the 72 h GO sample was well-bonded with the C-O functional group, signifying the successful synthesis of GO under an extended stirred duration. The FESEM images showed that the synthesized GO was well-arranged in crystal lattice of graphene sheets whereas the EDX result showed that higher atomic % of Oxygen, O2 was obtained with a longer stirred duration due to the high opportunity for oxygenated bonded to occur on the C-C functional group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call