Abstract

Abstract The state-of-the-art approaches for adjusting the structural characteristics of porous carbons are the after-treatments, which are complicated and time consuming. In this work, a facile approach was developed, i.e., controlling the initial oxygen concentration in-situ during the direct carbonization of zeolitic imidazole framework-8 (ZIF-8), to adjust the pore structure and prepare hierarchically porous carbons. The introduction of oxygen can significantly affect the crystalline and pore structures of porous carbons, and promote the pore widening and the formation of mesopores. An appropriate initial oxygen concentration can notably enhance the surface area and mesopore volume of porous carbon, and then improve the adsorption capacity toward methylene blue (MB) dye from water by 3.4 times. The developed approach is more efficient at lower carbonization temperature. Moreover, the introduction of oxygen can increase the ratio of HO C O groups on the carbon surface, leading to enhanced interaction with MB molecules and higher adsorption capacity toward MB. The as-prepared porous carbons exhibit superior adsorption capacities toward MB dye as compared to the reported ZIF-8 derived carbons. These findings would aid the development of porous carbon materials with high performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.