Abstract

Here, hierarchically meso/nanoporous TiO2 was successfully fabricated by a facile and efficient hydrolysis and calcination method using Ti(OC4H9)4 and K2S2O8 as precursors. The hydrosol was firstly prepared by drop-wise adding ethanol dissolved Ti(OC4H9)4 solution into acetone dissolved K2S2O8 solution under a vigorous stirring and heating condition. After being sufficiently hydrolyzed, the hydrosol was calcined to promote the crystallization of TiO2 and successfully dope S and C on TiO2. The calcination temperature significantly affects the doping of S and C on TiO2, crystallization of TiO2, formation of hierarchically meso/nanoporous structure of TiO2 and its light absorption capability. The S- and C-codoped TiO2 exhibits high photocatalytic H2 generation efficiency in a water/methanol sacrificial reagent system under the irradiation of UV light. The high photocatalytic efficiency is dependent on the comprehensively competing effects of the codoping of S and C, crystallization, specific surface area and light absorption capability. The S- and C-codoped TiO2 calcined at 600°C demonstrates the highest photocatalytic H2 generation efficiency, which is ascribed to the balanced synergy of the abovementioned factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call