Abstract

Novel, hierarchical, flower-like Ag/Cu2O and Au/Cu2O nanostructures were successfully fabricated and applied as efficient electrocatalysts for the electrochemical reduction of CO2. Cu2O nanospheres with a uniform size of ∼180 nm were initially synthesized. Thereafter, Cu2O was used as a sacrificial template to prepare a series of Ag/Cu2O composites through galvanic replacement. By varying the Ag/Cu atomic ratio, Ag0.125/Cu2O, having a hierarchical, flower-like nanostructure with intersecting Ag nanoflakes encompassing an inner Cu2O sphere, was prepared. The as-prepared Agx/Cu2O samples presented higher Faradaic efficiencies (FE) for CO and relatively suppressed H2 evolution than the parent Cu2O nanospheres due to the combination of Ag with Cu2O in the former. Notably, the highest CO evolution rate was achieved with Ag0.125/Cu2O due to the larger electroactive surface area furnished by the hierarchical structure. The same hierarchical flower-like structure was also obtained for the Au0.6/Cu2O composite, where the FECO (10%) was even higher than that of Ag0.125/Cu2O. Importantly, the results reveal that Ag0.125/Cu2O and Au0.6/Cu2O both exhibit remarkably improved stability relative to Cu2O. This study presents a facile method of developing hierarchical metal-oxide composites as efficient and stable electrocatalysts for the electrochemical reduction of CO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call