Abstract

A facile and low-cost method is presented to synthesize graphite/PEDOT/MnO2 composites with controlled network structures on commercial supercapacitor separator (CSS) membranes for high-performance supercapacitors, in which pencil lead and a cellulose-based commercial supercapacitor separator membrane were applied as the graphite source and the flexible substrate, respectively. The dependence of PEDOT and MnO2 loading on the structural formation, the electrochemical performance of the hybrid electrode, and the formation mechanism of MnO2 nanowires are systematically investigated. The optimized electrode possesses a high areal capacitance of 316.4 mF/cm(2) at a scan rate of 10 mV/s and specific capacitance of 195.7 F/g at 0.5 A/g. The asymmetric supercapacitor device assembled using optimized CSS/Graphite/PEDOT/MnO2 electrode and activated carbon electrode exhibits a high energy density of 31.4 Wh/kg at a power density of 90 W/kg and maintains 1 Wh/kg at 4500 W/kg. After 2000 cycles, the device retains 81.1% of initial specific capacitance, and can drive a mini DC-motor for ca. 10 s. The enhanced capability of the CSS-based graphite/PEDOT/MnO2 network electrode has high potential for low-cost, high-performance, and flexible supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call