Abstract

A novel metal-free electrocatalyst for the oxygen reduction reaction (ORR) is one of the most important issues in fuel cells. Here, we report a facile method to synthesize reduced graphene oxide (rGO) decorated with nitrogen-doped carbon nanowires (rGO-CN) as an electrocatalyst for ORR. After the polymerization of polpyrrole nanowires on the rGO surface (rGO-PPy), the carbonization of rGO-PPy at 800 °C affords a unique nanostructured product by the integration of rGO sheets and the N-doped carbon nanowires with high nitrogen content. The morphology of rGO-CN is confirmed by TEM analysis and the chemical composition and interaction of the prepared samples are analyzed by XPS and FT-IR analysis. The electrocatalytic activity of rGO-CN toward ORR is also evaluated by the cyclic voltammetry. It is found that the rGO-CN electrode shows superior electrocatalytic performance toward ORR, compared to rGO and rGO-PPy, which demonstrates the promising potential of rGO-CN as a carbon-based, metal-free electrocatalyst for enhancing the electrocatalytic property towards ORR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.