Abstract

BackgroundThe detection of hydrogen peroxide (H2O2) and nitrite ion () is of great important in various fields including clinic, food, pharmaceutical and environmental analyses. Compared with many methods that have been developed for the determination of them, the electrochemical detection method has attracted much attention. In recent years, with the development of nanotechnology, many kinds of micro/nano-scale materials have been used in the construction of electrochemical biosensors because of their unique and particular properties. Among these catalysts, copper oxide (CuO), as a well known p-type semiconductor, has gained increasing attention not only for its unique properties but also for its applications in many fields such as gas sensors, photocatalyst and electrochemistry sensors. Continuing our previous investigations on transition-metal oxide including cuprous oxide and α-Fe2O3 modified electrode, in the present paper we examine the electrochemical and electrocatalytical behavior of flower like copper oxide modified glass carbon electrodes (CuO/GCE).ResultsFlower like copper oxide (CuO) composed of many nanoflake was synthesized by a simple hydrothermal reaction and characterized using field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). CuO modified glass carbon electrode (CuO/GCE) was fabricated and characterized electrochemically. A highly sensitive method for the rapid amperometric detection of hydrogen peroxide (H2O2) and nitrite () was reported.ConclusionsDue to the large specific surface area and inner characteristic of the flower like CuO, the resulting electrode show excellent electrocatalytic reduction for H2O2 and oxidation of . Its sensitivity, low detection limit, fast response time and simplicity are satisfactory. Furthermore, this synthetic approach can also be applied for the synthesis of other inorganic oxides with improved performances and they can also be extended to construct other micro/nano-structured functional surfaces.

Highlights

  • ResultsFlower like copper oxide (CuO) composed of many nanoflake was synthesized by a simple hydrothermal reaction and characterized using field-emission scanning electron microscopy (FE-scanning electron microscopes (SEM)) and X-ray diffraction (XRD)

  • The detection of hydrogen peroxide (H2O2) and nitrite ion ( NO−2 ) is of great important in various fields including clinic, food, pharmaceutical and environmental analyses

  • Like H2O2, nitrite ion ( NO−2 ) is another often studied analyte in various fields including clinic, food, and environmental analyses because its excess level in the blood has been proved to lead to haemoglobin oxidation [23,24,25,26]

Read more

Summary

Results

Flower like copper oxide (CuO) composed of many nanoflake was synthesized by a simple hydrothermal reaction and characterized using field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). A highly sensitive method for the rapid amperometric detection of hydrogen peroxide (H2O2) and nitrite (NO−2 ) was reported

Conclusions
Background
Results and discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.