Abstract

It is necessary to build flexible and free-standing materials for flexible/wearable electronics in high-performance lithium-ions batteries. Herein, we design and fabricate a flexible and free-standing 3 D carbon/MoO2 composite through a facile immersing method followed by an annealing process. The carbon framework is supported by non-woven cotton totally covered by graphene sheets. The nanosized MoO2 particles were uniformly anchored on cotton fibers and graphene sheets. The structure has several advantages, such as an interconnected 3D electronically conductive network, plenty of channels for electrolyte solution cross, and more active points for the electrode reaction. Compared with cotton/MoO2 (C/MoO2) without graphene sheets, the CGN/MoO2 composite (cotton covered by graphene/MoO2) showed much better thermal stability and excellent cycling performance. The proposed synthesis process paves a new way as promising electrode materials for high power battery applications such as roll-up displays and wearable devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.