Abstract
Robust and efficient catalysts for the oxygen reduction reaction (ORR) are required for the development of various energy storage and conversion devices. In this study, a durable and high-performance Fe3 C@graphene ORR catalyst has been developed by the carbonization of urea- and agar-modified Fe2 O3 nanorods. The influence of the carbonization temperature and annealing time on the activity and stability of the resulting Fe/C catalyst was studied in detail. The Fe/C catalyst synthesized at a temperature of 700 °C (holding time: 60 min) showed better ORR activity and improved stability compared to a commercial Pt/C catalyst. The improved ORR catalytic activity of the catalyst is due to its high Fe3 C content and its good durability results from the unique microstructure of the Fe3 C@graphene hybrid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.