Abstract
The influence of hematite iron oxide (α-Fe2O3) nanoparticles in tungsten oxide (WO3) nanorods photocatalyst on photodegradation of organic pollutant was investigated in the present work. The spherical-shaped α-Fe2O3 nanoparticles and WO3 nanorods were synthesized from citrate precursor and hydrothermal routes respectively. The different weight percentage (wt%) ratios (1, 2, and 3 wt%) of α-Fe2O3 added heterostructured α-Fe2O3/WO3 composite photocatalysts by a simple physical mixing process. The photocatalytic activities of as-synthesized photocatalysts were evaluated by photodegradation of methylene blue (MB) under visible-light irradiation. It showed that the 2% α-Fe2O3/WO3 composite exhibited excellent photocatalytic activity than the others. This enhancement could be attributed to its strong absorption in the visible region and the low recombination rate of electron-hole pairs. In addition, the photo-electrochemical measurements of the 2% α-Fe2O3/WO3 composite revealed the faster migration of the photo-excited charge-carriers. Hence, this study demonstrates the heterostructured α-Fe2O3/WO3 composite as a promising candidate for environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.