Abstract

Electromagnetic Ni@glass fiber composite with perfect Ni layers were successfully obtained by a versatile electroless deposition method. Glass fibers were firstly pretreated by roughing, sensitization, and activation. Then the glass fibers after pretreatment were conducted the electroless nickel process. We have investigated the influence of bath solution parameters on the morphology, chemical composition, magnetic property, and conductivity of the Ni@glass fiber composites using scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry, transmission electron microscope, and four-probe meter techniques, respectively. The deposited nickel coatings and volume resistivity of the obtained samples were dependent on the bath temperature, pH value, dosage of complexing agent and reductant. Uniform and compact Ni film could be deposited on the surface of glass fibers, with which the optimal volume resistivity could reach (7.36 ± 0.37) × 10−3 Ω cm, and the saturation magnetization (M s ) and coercivity (H c ) were confirmed to be 3.0 emu/g and 164.5 Oe, respectively. The current synthetic process may prompt the applicability in electromagnetic shielding field with industrial scale production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.