Abstract

Multi-pesticides pollution induced by organophosphorus insecticides (OPs) and aryloxyphenoxypropionate herbicides (AOPPs) has become a significant challenge in bioremediation of water pollution due to their prolonged and over application. Though a number of physical, chemical, and biological approaches have been developed for different pesticides, the explorations usually focus on eliminating single pesticide pollution. Herein, a heterostructure nanocomposite OPH/QpeH@mZIF-8, encapsulating OPs hydrolase OPH and AOPPs hydrolase QpeH in the magnetic zeolitic imidazolate frameworks-8 (mZIF-8), was synthesized through a facile one-pot method in aqueous solution. The immobilized OPH and QpeH in mZIF-8 showed high activities towards the two most common OPs and AOPPs, i.e., chlorpyrifos and quizalofop-P-ethyl, which were hydrolyzed to 3,5,6-Trichloro-2-pyridino (TCP) and quizalofop acid, respectively. Moreover, the magnetic nanocatalyst possessed great tolerance towards broad pH range, high temperatures, and different chemical solvents and excellent recyclability. More importantly, compared to free OPH and QpeH, OPH/QpeH@mZIF-8, with significantly enhanced degradation capability, exhibited enormous potential for simultaneous removal of chlorpyrifos and quizalofop-p-ethyl from the surface and industrial wastewater. Overall, the study demonstrates the applicability of this strategy for utilizing magnetic nanocatalysts encapsulating multiple enzymes due to its simplicity, high efficiency, and economic benefits to removing pesticide compound pollution from various water resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call