Abstract

Hierarchical CuO nanosheets were synthesized through a facile, eco-friendly reflux deposition approach for supercapacitor electrode material for energy storage. The resultant CuO nanosheets were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherm techniques. The supercapacitor behavior of CuO nanosheets was investigated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in novel 0.1 M aqueous 1-(1′-methyl-2′-oxo-propyl)-3-dimethylimidazolium chloride [MOPMIM][Cl] ionic liquid as an electrolyte. The result demonstrate that CuO nanosheets exhibit specific capacitance of 180 F g−1 at 10 mV s−1 scan rate which is the highest value in ionic liquid electrolyte and 87% specific capacitance retention after 5000th cycle. The electrochemical performance proves CuO nanosheets as electrode with ionic liquid electrolyte for developing green chemistry approach in supercapacitor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call