Abstract
The design of hierarchical heterogeneous structures with rational components is considered as a promising method to enhance the properties of electrocatalyst. Binary metal oxides, with high electrochemical activity, have attracted considerable interest in glucose determination. In this work, we synthesized the CuCo2O4@NiCo2O4 hybrid structure on conductive carbon cloth (CC) via a simple two-step hydrothermal process and investigated its catalytic ability toward glucose. The two individual components that make up this hybrid electrode have good electrical conductivity and excellent catalytic properties for glucose, so the smart combination of these two active materials can provide more catalytic sites and sufficient redox couples for the glucose oxidation. As a result, the CuCo2O4@NiCo2O4 modified CC presented superior glucose sensing properties, including ultrahigh sensitivity, fast response time, wide linear range and acceptable detection limit. Besides, the sample also exhibited good selectivity for substances in human blood that interfere with glucose detection, such as UA, AA, fructose, sucrose and KCl. The potential of the CuCo2O4@NiCo2O4/CC electrode for practical application was investigated by measuring the glucose concentration in real serum samples. These results prove that the construction of hierarchical ordered structure is conducive to the improvement of glucose sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.