Abstract

The development of electrode materials with simple preparation, favorable price, excellent electrocatalytic activity, and stability are some of the most important issues in the field of electrochemistry. Herein, we prepared Ni–Co/Ni–Co–O–P cotton flower like on a copper sheet (CS) by a convenient, efficient, and scalable electrodeposition method. The Ni–Co/Ni–Co–O–P was employed as effective binder free electrode material in two different applications such as electrocatalytic water splitting and acetaminophen (APAP) sensor. Remarkably, the Ni–Co/Ni–Co–O–P@CS exhibits low overpotentials of 310 and 90 mV at 10 mA cm−2 for oxygen and hydrogen evolution reactions in alkaline media, respectively. Besides, the Ni–Co/Ni–Co–O–P@CS || Ni–Co/Ni–Co–O–P@CS couple needs a low cell voltage of 1.62 V to achieve a current density of 10 mA cm−2, and its potential change is negligible after 20 h of continuous operation. Furthermore, Ni–Co/Ni–Co–O–P displays good electrochemical sensing performance toward APAP with a high sensitivity of 803.74 μA mM−1cm−2, low limit of detection of 0.16 μM, a wide linear range of 0.05 mM–3 mM, and a fast response time of 3.3 s. This work proposes a simple approach for synthesis of Ni–Co/Ni–Co–O–P as an efficient electrode material for water splitting and APAP sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.