Abstract

Considering their superior electrochemical performances, extensive studies have been carried out on composite nanomaterials based on porous carbon nanofibers. However, the introduction of inorganic components into a porous structure is complex and has a low yield. In this study, we propose a simple synthesis of cobalt-oxide-incorporated multichannel carbon nanofibers (P-Co-MCNFs) as electrode materials for electrochemical applications. The cobalt oxide component is directly formed in the carbon structure by a simple oxygen plasma exposure of the phase-separated polymer nanofibers. P-Co-MCNF displays high specific capacitance (815 F g-1 at 2.0 A g-1), rate capability (821 F g-1 at 1 A g-1 and 786 F g-1 at 20 A g-1), and cycle stability (92.1% for 5000 cycles) as a supercapacitor electrode. Moreover, excellent sensitivity (down to 1 nM) and selectivity to the glucose molecule is demonstrated for nonenzyme sensor applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.