Abstract

Highly photocatalytically active nanodisks of ZnO and Co doped ZnO were synthesized by a facile wet chemical method. The structural, optical and photocatalytic properties of ZnO and Co doped ZnO nanodisks were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and UV-visible absorption spectroscopy. FESEM, AFM and TEM studies revealed the presence of ZnO nanodisks. Sun light driven degradation of aqueous methyl orange (MO) dye was used for evaluating the photocatalytic activity of as-synthesized ZnO and Co doped ZnO nanodisks. Co doped ZnO nanodisks showed very high photocatalytic efficiency and lead to almost complete degradation of MO dye in just 8 minutes. A tentative mechanism of the photocatalytic degradation of MO by Co doped ZnO nanodisks is proposed. We attribute the enhanced photocatalytic activity of Co doped ZnO nanodisks to their high specific surface area and efficient charge carrier separation due Co doping, which improves suppression of recombination of photogenerated electrons and holes. Development of sun light active highly efficient and stable photocatalysts is very promising for environmental remediation leading to safe and clean water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.