Abstract

A green and efficient photocatalyst based on C and N co-doped titanium based nanorods (NRs) was prepared by facile hydrothermal synthesis and interlaminar bonding interaction between layered and tetramethylammonium hydroxide (TMAH). TMAH as one of quaternary ammonium-based compounds was used as the doping source of C and N elements. The results showed that C and N co-doping did not affect the anatase crystal structure of TiO2 NRs. C, N-TiO2 NRs showed excellent photocatalytic activity for degrading methyl orange under simulated sunlight irradiation. In particular, the 20:1 TiO2 NRs catalyst showed the best catalytic performance, showing efficient photocatalytic rate of 90%. The photocatalytic reaction kinetics of undoped and doped catalysts was also studied. In addition, reactive species (RSs) experiments showed that hydroxyl radical (·OH), superoxide radical anions (·O2−) and photogenerated holes (h+) were major active species during the photocatalytic process. The mechanisms of the electrostatic attraction and potential photocatalytic degradation were proposed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.