Abstract

The development of electrocatalysts that can maintain high reactivity and stability over a wide pH range during electrolysis reactions is essential for the realization of a clean hydrogen energy society. Herein, we report the synthesis of AuIr alloy nanoparticles (NPs) with an excellent oxygen evolution reaction (OER) performance over a wide pH range. The NPs were synthesized via an antisolvent crystallization-based method and maintained their small sizes regardless of adjustments in the ratio of the Au/Ir precursor. AuIr/C exhibited low overpotential and good long-term stability under acidic and alkaline conditions compared with the Ir/C and commercial RuO2. The enhanced OER performance of AuIr/C was attributed to efficient charge transfer, resulting in an optimal synergistic effect of electrons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call