Abstract

The analysis of biological samples is often affected by the background matrix. Proper sample preparation is a critical step in the analytical procedure for complex samples. In this study, a simple and efficient enrichment strategy based on Amino-functionalized Polymer-Magnetic MicroParticles (NH2-PMMPs) with coral-like porous structures was developed to enable the detection of 320 anionic metabolites, providing detailed coverage of phosphorylation metabolism. Among them, 102 polar phosphate metabolites including nucleotides, cyclic nucleotides, sugar nucleotides, phosphate sugars, and phosphates, were enriched and identified from serum, tissues, and cells. Furthermore, the detection of 34 previously unknown polar phosphate metabolites in serum samples demonstrates the advantages of this efficient enrichment method for mass spectrometric analysis. The limit of detections (LODs) were between 0.02 and 4 nmol/L for most anionic metabolites and its high sensitivity enabled the detection of 36 polar anion metabolites from 10 cell equivalent samples. This study has provided a promising tool for the efficient enrichment and analysis of anionic metabolites in biological samples with high sensitivity and broad coverage, facilitating the knowledge of the phosphorylation processes of life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call