Abstract

Based on MnO2/carbon cloth (CC) composite materials, an Ag-doped MnO2 nanowire, self-assembled, urchin-like structure was synthesized in situ on the surface of CC using a simple method, and a novel and efficient flexible electrode material for supercapacitors was developed. The morphology, structure, elemental distribution, and pore distribution of the material were analyzed using SEM, TEM, XRD, XPS, and BET. The electrochemical performance was tested using cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD). In the three-electrode system, GCD testing showed that the specific capacitance of the material reached 520.8 F/g at 0.5 A/g. After 2000 cycles at a current density of 1 A/g, the capacitance retention rate was 90.6%, demonstrating its enormous potential in the application of supercapacitor electrode materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.