Abstract
Chitosan (1) was reacted with phenylisothiocyanate in 5% AcOH/H2O to give N-phenylthiocarbamoyl chitosan (2) with a degree of substitution (DS) of N-phenylthiocarbamoyl groups of 0.86 in 87.1% yield. The following acylation of compound 2 with hexanoyl chloride in the presence of pyridine afforded 3,6-di-O-2,3-hexanoyl chitosan isothiocyanate (4a) with a DS of the isothiocyanate groups of 0.70 in high yield, unexpectedly. Compound 4a exhibited high levels of reactivity toward various amines to give the corresponding N-thiocarbamoyl chitosan derivatives in high yields. Other acyl (decanoyl (4b), myristroyl (4c), stearoyl (4d), benzoyl (4e)) chitosan isothiocyanates were also prepared from chitosan (1) in high yields. To evaluate the potential applications of acyl chitosan isothiocyanates, N-(triphenylporphynyl)thiocarbamoyl chitosan derivative 6 with a DS of the triphenylporphynyl groups of 0.46 was prepared from compound 4b. The Langmuir–Blodgett monolayer film of compound 6 gave a good photon-to-electron conversion performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.