Abstract

Employing a visible-light-driven direct Z-scheme photocatalytic system for the abatement of organic pollutants has become the key scientific approach in the area of photocatalysis. In this study, a highly efficient Z-scheme ZnIn2S4/MoO3 heterojunction was prepared through the hydrothermal method, followed by the impregnation technique that facilitates the formation of an interface between the two phases for efficient photocatalysis. The structural, optical, and surface elemental composition and morphology of the prepared samples were characterized in detail through X-ray diffraction, UV–vis diffuse reflectance spectra, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results indicate that the composite materials have a strong intimate contact between the two phases, which is beneficial for the effective separation of photoinduced charge carriers. The visible-light-mediated photocatalytic activity of the samples was tested by studying the degradation of methyl orange (MO), rhodamine B (RhB), and paracetamol in aqueous suspension. An optimum loading content of 40 wt % ZnIn2S4/MoO3 exhibits the best degradation efficiency toward the above pollutants compared to bare MoO3 and ZnIn2S4. The improved photocatalytic activity could be ascribed to the efficient light-harvesting property and prolonged charge separation ability of the Z-scheme ZnIn2S4/MoO3 catalyst. Based on reactive species determination results, the Z-scheme charge transfer mechanism of ZnIn2S4/MoO3 was discussed and proposed. This study paves the way toward the development of highly efficient direct Z-scheme structures for a multitude of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call