Abstract
A novel hydrophilic imidazolium fluorescent chemosensor has been utilized to prepare water-soluble fluorescent graphene complex via a facile ion-exchange strategy, which gives a very high quantum yield (0.87). The highly fluorescent graphene complex displays a close resemblance to the water-soluble fluorescent chemosensor, as the chemisorbed imidazolium hinders the electron transfer between the naphthalene moiety and the graphene. If the imidazolium is simply physisorbed on graphene by physical mixing, it does not show a high quantum yield because the π-π stacking between the naphthalene moiety and graphene leads to fluorescence quenching. The fluorescent chemosensor selectively detects RNA by turn-on fluorescence at physiological pH in aqueous solution. The fluorescent chemosensor as well as the fluorescent graphene complex would find potential applications as photoresponsive materials and biomedical probes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.