Abstract
Photocatalysis is regarded as one of the most effective strategies for the removal of the toxic organic pollutants from aqueous solutions. However, a lack of the efficient photocatalysts prevents the widespread practical application. Herein, the electrostatic self-assembly method has been designed for facile synthesis of a novel BaSnO3/PDDA/MXene (BSO/P/MX) nanocomposite as high efficient photocatalyst. In this nanocomposite, the BaSnO3 (BSO), poly (dimethyl-diallylammonium chloride) (PDDA) and MXene (Ti3C2Tx) act as the active species, structure stabilizer and efficient electron transfer medium, respectively. Due to the strong synergy of the nanocomposite, the electron-transferring ability as well as the charge separation efficiency is boosted and thus high catalytic activity achieves towards the photodegradation of 4-nitrophenol. The superior degradation rate of 98.8% and a rate constant K of 0.09113 min−1 have been realized within 75 min of ultraviolet (UV) light irradiation over the BSO/P/MX-8% catalyst. This as-prepared nanocomposite with the excellent catalytic activity can be employed as a promising photocatalyst for treating the organic pollutants from aqueous solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.