Abstract

In this work, a novel visible light-driven heterostructure Ag3PO4/MIL-100(Fe) composite photocatalyst was successfully synthesized via facile chemical deposition method at room temperature. Especially when the mass ratio of Ag3PO4 was 20% of MIL-100(Fe) (APM-2), it displayed the best photocatalytic performance, for which the degradation rate of tetracycline (TC) in conventional environment was 6.8 times higher than that of bare MIL-100(Fe). In addition, the effects of the initial concentration and pH of the solution on the degradation of tetracycline were also studied, and the results showed that the degradation of tetracycline was more favorable in a weakly alkaline environment. The excellent performance of Ag3PO4/MIL-100(Fe) composites was attributed to the fact that on the basis of having adequate photocatalytic active sites, modifying MIL-100(Fe) with an appropriate amount of Ag3PO4 particles can more effectively separate photogenerated electron-hole pairs. Five cycles of experiments showed that APM-2 has good photostability. Lastly, it was proved through quenching experiments that •O2-, h+, and •OH all played corresponding roles in the degradation process, and a possible Z-scheme heterostructure photocatalytic degradation mechanism was proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call